Application FAQs

What do I need to know to APPLY?

ACADEMIC REQUIREMENTS
- MSc in Computing Science or a closely-related field.
- Grade requirements: minimum first class standing (A average).

ADDITIONAL REQUIREMENTS
- Statement of research interests.
- If English is not a native language, prospective students must meet the following English language proficiency requirements in writing, speaking, reading, and listening: TOEFL (paper-based): 550, (2) TOEFL iBT: Writing (24/30), Speaking (22/30), Reading (22/30), Listening (20/30); for a total of 88/120 applicants must have the minimum score in each test as well as the minimum overall score, or (3) IELTS: 7.0 (academic module overall band score), or (4) PTE Academics: 65.

KEY DATES & DEADLINES
- Application due: January 15th for both September and January admissions.
- Notification of acceptance: Between February and June.

Before you start your application, please review the *Graduate studies application process*.

What about FUNDING?

The minimum funding guarantee for Computing PhD students is $21,500 per year, throughout years 1-4. The funding package may be comprised of graduate awards and teaching assistantships.

We encourage all students to apply for external funding from OGS, NSERC and other sources. Queen’s will automatically issue a $10,000 award to incoming PhD students who have won federal government tri-council awards. For more information, see the School of Graduate Studies’ information on awards and scholarships.

Why GRADUATE STUDIES in COMPUTING?

The School of Computing is active in research on a broad range of topics, with an strong research record. Research areas include: Biomedical Computing, Cloud Computing, Databases, Data Mining, Mobile Networks, Software Engineering, Human-Machine Learning, Algorithms, Computational Linguistics, Theoretical Computer Science, Computational Geometry, Graph Theory, Artificial Intelligence, Parallel Systems, and Programming Languages. We are finding methods to make data more secure, software more reliable, and computers more intelligent.

“The cutting-edge research, world-renowned supervisors, unparalleled social experience, and a devotion to school life […] result in nothing short of awesome.”

– Eric Rapos, PhD student

Why QUEEN’S?

The Queen’s School of Computing offers a graduate program that is unique in its quality, diversity, innovation and reach. Our faculty and students are engaged in research projects that span the spectrum of traditional computer science, while at the same time exploring areas never visited before. Some of us are discovering properties of certain computers that are radically different from the ones we have today, in the sense that a bit is the spin of an atom, or a register is a strand of DNA. Others are building organic interfaces for humans to communicate with computers. At Queen’s you will find a School reputed for its academic excellence and the wonderful atmosphere it enjoys.

Program STRUCTURE

PhD (4 years): Course work, topic proposal, comprehensive exam, research, thesis writing, thesis defence.

RESEARCH Areas
- Theory
- Software
- Databases and Cloud Computing
- Biomedical Computing
- Data Mining
- Mobile Computer Networking
- Game Development and Human Computer Interaction

We encourage you to identify an area of research interest and contact a potential supervisor before applying.

Visit the [School of Computing website](http://www.compsci.queensu.ca) to read faculty profiles and learn more about faculty members research areas. When you find a faculty member with similar research interests to yours, contact him/her and tell them about your interest in graduate work and related experience.
YEAR I

Key priorities include forming your committee, coursework, field exams, and language exam.

- Meet early with your supervisor to set expectations and discuss roles, responsibilities, program requirements, resources, research/occupational goals, timelines, and any required accommodation plans.
- Look to **Student Academic Success Services** for a variety of support.
- Prepare your topical proposal.

YEAR II

- Write and defend your thesis proposal.
- Embark on your substantive research.
- Set up regular meetings with your supervisor to discuss progress and obstacles to timely completion.
- Find your way through the academic process with the help of **Expanding Horizons** and the **SGS Habitat**
- Seek professional/developmental opportunities.

YEAR III

- Continue to meet regularly with your supervisor, review research progress, and write your dissertation.
- Check out the **SGS Dissertation Boot Camp** or **Dissertation on the Lake**
- Use conference presentations to create, discuss, and explore ways to disseminate research findings. Learn from the **Expanding Horizons Publishing workshop**
- Begin discussion of potential thesis defense examiners.
- Plan date of thesis submission for examination.
- Present your research to graduate students and faculty at conferences and work with supervisor to prepare for defence.
- Review submission and examination guidelines.
- Secure necessary oral defence accommodations.
- Discuss career pathways, references, letters, and publication options with your supervisor.

YEAR IV & TRANSITIONING

- **YEAR IV**
 - Continue to attend conferences and connect with scholars in your field and with community partners.
 - Continue public outreach through social media and the Queen’s Media Centre.

WHAT WILL I LEARN?

- A graduate degree in Computing can equip you with valuable and versatile skills, such as:
 - **Knowledge and technical skills**
 - **Effective communication skills** in multiple forms for diverse audiences.
 - **Information management:** prioritize, organize, and synthesize large amounts of information.
 - **Time management:** Meet deadlines and manage responsibilities despite competing demands.
 - **Project management:** develop ideas, gather information, analyze, critically appraise findings, draw and act on conclusions.
 - **Creativity and innovation**
 - **Pervensory:**
 - **Independence and experience as a collaborative worker**
 - **Awareness:** an understanding of sound ethical practices, social responsibility, responsible research and cultural sensitivity.
 - **Professionalism:** in all aspects of work, research, and interactions.
 - **Leadership:** initiative and vision leading people and discussion.

WHERE CAN I GO?

A PhD in Computing can take your career in many directions. In Canada, less than 40% of all PhDs will work in post-secondary education—the majority will work in industry, government, or non-profits.

- **Management positions** in public, private, and non-profit organizations.
- **Systems Software Developer**
- **Telecommunications/Networks Engineer**
- **Biomedical Engineer/Bioinformatics specialist**
- **Special Effects/Graphics Specialist**
- **Computer Systems/Database Manager**
- **Operations Research Specialist**
- **Systems Analyst/Operating Systems Programmer**
- **Electronic Data Processing Auditor**

Taking time to explore career options, build experience, and network can help you have a smooth transition to the world of work after graduation.