There has never been a more exciting time to study biology, with subjects ranging from climate change and the conservation of biodiversity to the origin and evolution of life, and from the form and function of organisms to the ongoing “omics” revolution at the molecular level. Our program emphasizes interactive learning with hands-on laboratories, field courses, and small senior seminar modules.

Why study in Kingston?

For 175 years, our community has been more than a collection of bright minds – Queen’s has attracted students with an ambitious spirit. Queen’s has the highest retention rates, the highest graduation rates, and one of the highest employment rates among recent graduates. We are a research intensive university focused on the undergraduate experience. The BBC has identified Kingston as one of the GREATEST UNIVERSITY TOWNS in the world – and it is often awarded the safest city in Canada. It is a university city at the core; just a quick drive to Toronto, Montreal, Ottawa and even New York. A university with more clubs per capita than any other university in Canada, and a city with more restaurants per capita than any other city in North America – you will have the experience of a lifetime at Queen’s and graduate with a degree that is globally recognized among the best.

How to use this map

Use the 5 rows of the map to explore possibilities and plan for success in the five overlapping areas of career and academics. The map just offers suggestions – you don’t have to do it all! To make your own custom map, use the My Major Map tool.

Get started thinking about the future now – where do you want to go after your degree? Having tentative goals (like careers or grad school) while working through your degree can help with short-term decisions about courses and experiences, but also help you keep motivated for success.

Get the help you need

Queen’s provides you with a broad range of support services from your first point of contact with the university through to graduation. At Queen’s, you are never alone. We have many offices dedicated to helping you learn, think and do.

Ranging from help with academics and careers, to physical, emotional, or spiritual resources – our welcoming living and learning environment offers the programs and services you need to be successful, both academically and personally. Queen’s wants you to succeed! Check out the Student Affairs website for available resources.

There has never been a more exciting time to study biology, with subjects ranging from climate change and the conservation of biodiversity to the origin and evolution of life, and from the form and function of organisms to the ongoing “omics” revolution at the molecular level. Our program emphasizes interactive learning with hands-on laboratories, field courses, and small senior seminar modules.
A degree in Biology can equip you with:

- Develop knowledge of biological functions
- Use laboratory equipment and instruments
- Gain hands-on experience studying biology in the field
- Comply with quality control and safety regulations
- Collect and preserve organisms
- Design experimental studies
- Present literature and research findings in posters and seminars
- Observe and make measurements
- Write, review, and summarize scientific writing
- Analyze and evaluate information
- Statistical analysis of biological data
- Solve quantitative problems

Where can I go?
A degree in Biology can take your career in many directions. Many students choose to continue their academic inquiry with a Master. Our students are equipped with a strong foundation for careers in:

- Agricultural Sciences
- Biotechnology
- Biocommunications
- Bioinformatics
- Biophysics
- Biotechnology
- Biocommunications
- Biophysics